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The three-dimensional velocity field of a propeller-driven liquid metal flow is reconstructed by a contactless
inductive flow tomography. The underlying theory is presented within the framework of an integral equation
system that governs the magnetic field distribution in a moving electrically conducting fluid. For small mag-
netic Reynolds numbers this integral equation system can be cast into a linear inverse problem for the deter-
mination of the velocity field from externally measured magnetic fields. A robust reconstruction of the large
scale velocity field is already achieved by applying the external magnetic field alternately in two orthogonal
directions and measuring the corresponding sets of induced magnetic fields. Kelvin’s theorem is exploited to
regularize the resulting velocity field by using the kinetic energy of the flow as a regularizing functional. The
results of this technique are shown to be in satisfactory agreement with ultrasonic measurements.
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I. INTRODUCTION

Flow measurement in metallic and semiconducting melts
is a notorious problem in a number of technologies, reaching
from iron casting to silicon crystal growth. Obviously, the
usual optical methods of flow measurement are inappropriate
for those opaque fluids. Ultrasonic techniques have prob-
lems, too, when applied to very hot or chemically aggressive
melts. A completely contactless flow measurement technique
would be highly desirable, even if it were only to provide a
rough picture of the flow.

Fortunately, metallic and semiconducting melts are char-
acterized by a high electrical conductivity. Hence, when ex-
posed to an external magnetic field, the flowing melt gives
rise to electrical currents that lead to a deformation of the
applied magnetic field. This field deformation is measurable
outside the fluid volume, and it can be used to reconstruct the
velocity field, quite in parallel with the well-known magne-
toencephalography, where neuronal activity in the brain is
inferred from magnetic field measurements[1]. The goal of
this paper is to report on the experimental demonstration of
such acontactless inductive flow tomography (CIFT).

II. THEORY

The ratio of the induced field to the applied field is deter-
mined by the so-called magnetic Reynolds number, defined
as Rm=msvl, with m denoting the magnetic permeability of
the melt,s its electrical conductivity,v a typical velocity,
and l a typical length scale of the flow. In industrial applica-
tions, Rm is on the order of 0.01–1. Only for a few large
scale sodium flows, as they appear in fast breeder reactors,
but also in recent hydromagnetic dynamo experiments[2],
does Rm reach values on the order of 10–100(of course, in
some cosmic dynamos Rm can even be much larger). Actu-
ally, the present work was strongly motivated by the wish to
reconstruct the sodium flow in the Riga dynamo experiment
by an appropriate contactless method.

Suppose the fluid to flow with the stationary velocityv,
and to be exposed to a magnetic fieldB, which we leave

unspecified for the moment. Then, according to Ohm’s law
in moving conductors the current

j = ssv 3 B − =wd s1d

is induced, withw denoting the electric potential. This cur-
rent gives rise to the induced magnetic field
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Equation(2) follows from inserting Eq.(1) into Biot-Savart’s
law and transforming the volume integral over=w into a
surface integral overw.

The electric potentialw at the boundaryS, in turn, has to
satisfy the boundary integral equation
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Equation(3) follows from taking the divergence of Eq.(1)
and utilizing= ·j =0. Then, Green’s theorem can be applied
to the solution of the arising Poisson equationDw= = ·sv
3Bd, requiring that the current is purely tangential at the
boundary[3]. Note that Eq.(3) is the basic formula for the
vast area ofelectric inductive flow measurement[4] which
is, however, not the subject of the present work.

In general, the magnetic fieldB on the right hand sides of
Eqs. (1)–(3) is the sum of an externally applied magnetic
field B0 and the induced magnetic fieldb. Hence Eqs.(2) and
(3) represent an integral equation system which actually can
be used to solve dynamo problems in arbitrary bounded do-
mains[5]. It is also suitable for a systematic investigation of
the nonlinear induction effects as they appear already in the

PHYSICAL REVIEW E 70, 056306(2004)

1539-3755/2004/70(5)/056306(7)/$22.50 ©2004 The American Physical Society70 056306-1



subcritical regime of laboratory dynamos[6].
In the following, however, all considerations will be re-

stricted to problems with small Rm for whichB can be re-
placed byB0. Then we get a linear relation between the
desired velocity field and the induced magnetic field which is
supposed to be measured. But how to cope with the remain-
ing Eq. (3) for the electric potential?

The answer to this question can be adopted from magne-
toencephalography[1]. Assume, for a givenB0, that all mea-
sured magnetic field data be collected into an
NB-dimensional vector with entriesbi

sB0d, and the desired ve-
locity components at theNV discretization points by a vector
with the entriesvn. The solution of the boundary integral
equation may require a fine discretization of the boundary,
with NP degrees of freedomwk

sB0d. Equations(2) and(3) can
then be written in the form

bi
sB0d = Rin

sB0dvn + Sikwk
sB0d, s4d

wk
sB0d = Tkn

sB0dvn + Ukk8wk8
sB0d, s5d

where the matricesRsB0d and T sB0d depend on the applied
field B0, whereas the matricesS andU depend only on geo-
metric factors.

As is well known from magnetoencephalography, the in-
version of Eq.(5) is a bit tricky due to the singularity of the
matrix sI −Ud. This singularity mirrors the fact that the elec-
tric potential is defined only up to an additive constant. We
can remove this ambiguity by replacingsI −Ud by a gener-
ally well conditioned matrix sI −Uddefl

ª sI −Ud−N−1eeT,
wheree is a vector with allN entries equal to 1 andeT is its
transpose. By applying this so-called deflation method[1]
one ends up with

bi
sB0d = Rin

sB0dvn + Sik8sI − Udk8k
−1,deflTkn

sB0dvn, s6d

i.e., with a linear relation between the desired velocity field
and the measured magnetic field.

Despite the far-reaching similarity, there is one essential
difference of our method compared to magnetoencephalog-
raphy. While in the latter one has to determine a single neu-
ronal current distribution, in our case we can produce quite
different current distributionsfrom the same flow fieldsimply
by applying various external magnetic fields subsequently.
For each applied magnetic field we can measure the corre-
sponding induced fields, and utilize all of them to reconstruct
the flow.

Concerning the uniqueness question for this sort of inver-
sion, here we give only a shortened answer, referring for
more details to the previous papers[7,8]. For spherical ge-
ometry, and the two applied magnetic fields pointing in or-
thogonal directions, the problem can be solved with some
rigor. Suppose we have measured the two corresponding sets
of induced magnetic fields on a sphere outside the fluid vol-
ume, and have expanded them into spherical harmonics. The
desired(solenoidal) velocity field can be represented by two
scalars for its poloidal and toroidal parts. These two scalars
can also be expanded into spherical harmonics, but with the
expansion coefficient still being functions of the radius. In
Ref. [8] it had been shown(at least in some low degrees of

the spherical harmonics expansion) that what can be derived
from the two magnetic field expansion coefficients are some
radial moments of the expansion coefficients for the velocity
field. A further concretization of the radial dependence of the
velocity expansion coefficients can be achieved only by
regularization techniques. If we demand, in a slight overin-
terpretation of Kelvin’s theorem, the flow to possess minimal
kinetic energy, we obtain a unique solution for the radial
dependence, too.

Without any rigorous proof at hand, we assume that this
result can be generalized to aspherical geometry: the large
main structure of the large scale flow is well inferrable, with
a depth ambiguity of the velocity that can be resolved only
by regularization techniques. Imposing two orthogonal mag-
netic fields represents a certain minimum configuration for
such a flow tomography. For a single magnetic field of one
direction there are, of course, flow components which would
be hidden from outside. However, all those components are
detectable for an external magnetic field orthogonal to the
previous one.

For our experimental application we employ the so-called
Tikhonov regularization[9], minimizing the total functional

Ffvg = FB0x
fvg + FB0z

fvg + Fdivfvg + Fregfvg s7d

with
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The first two functionals represent, for applied transverse
field B0x and axial fieldB0z, respectively, the mean squared
residual deviation of the measured induced magnetic fields
bi,meas

sB0d from the fieldsbi
sB0dfvg modeled according to Eq.(6).

Fdivfvg enforces the velocity field to be solenoidal, and
Fregfvg is the regularization functional which tries to mini-
mize the kinetic energy. The parameterssi are the assumeda
priori errors for the measurement of the induced fields. The
parametersdiv is chosen very small as it is a measure for the
divergence the velocity solution is allowed to have. The pa-
rameterspen determines the trade-off between minimizing
the mean squared residual deviation of the observed fields
and minimizing the kinetic energy of the estimated velocity
field. The normal equations, which follow from the minimi-
zation of the functional(7), are solved by Cholesky decom-
position.
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III. EXPERIMENT

In the experiment(Fig. 1) we use 4.4 l of the eutectic
alloy Ga67In20.5Sn12.5 which is liquid at room temperatures.
The flow is produced by a motor-driven propeller with a
diameter of 6 cm inside a cylindrical polypropylene vessel
with 18.0 cm diameter. The height of the liquid metal is
17.2 cm, yielding an aspect ratio close to 1.

The position of the propeller is approximately at one-third
of the total height, measured from the top. Eight guiding
blades above the propeller are intended to remove the swirl
of the flow for the case that the propeller pumps upward.
Contrary to that, the downward pumping produces, in addi-
tion to the main poloidal motion, a considerable toroidal mo-
tion. The rotation rate of the propeller can reach up to
2000 rpm, which amounts to a mean velocity of approxi-
mately 1 m/s, corresponding to a magnetic Reynolds num-
ber of approximately 0.4.

Two pairs of Helmholtz coils are fed by currents of 22.5
and 32.5 A, respectively, to produce alternately an axial and
a transversal field of 4 mT, which both are rather homoge-
neous throughout the vessel. Either field is applied for a pe-
riod of 3 s, during which a trapezoidal signal form is used.
The measurements are carried out for 0.5 s, 1 s after the
plateau value of the trapezoidal current has been reached.
Hence, we get an online monitoring with a time resolution of
6 s.

The induced magnetic fields are measured by 49 Hall sen-
sors, eight of them grouped together on each of six circuit
boards which are located at different heights(Fig. 1). One
additional sensor is located in the center below the vessel.
The key problem of the method is the reliable determination
of comparably small induced magnetic fields on the back-
ground of much higher imposed magnetic fields. An accurate
control of the external magnetic field is essential to meet this
goal. In our configuration the current drift in the Helmholtz
coils can be controlled with an accuracy of better than 0.1%.
This is sufficient since the measured induced fields are ap-
proximately 1% of the applied field. The temperature drift of
the sensitivity can be overcome by enforcing the applied

current in the Hall sensors to be constant. The temperature
drift of the offset problem is circumvented by changing the
sign of the applied magnetic field. Figure 2 shows that by
these means a stable measurement of the small induced field
can be realized, even over a period of one hour.

For upward and downward pumping, Figs. 3 and 4 show
the induced magnetic fields measured at the 49 positions, and
the inferred velocity field at 52 discretization points. In Fig.
3(c) we see clearly the upward flow in the center of the
vessel and the downward flow at the rim, but nearly no ro-
tation of the flow in Fig. 3(d). In Fig. 4(c) we can identify the
downward flow in the center and the upward flow at the rim,
and in Fig. 4(d) a clear rotation of the flow. Evidently, the
method is able to identify the poloidal rolls and the absence
or presence of the swirl.

For both flow directions, Fig. 5 illustrates the application
of Tikhonov’s L curves[9]. This curve, which results from
scaling the parameterspen in Eq. (11) from lower to higher
values, shows the dependence of the mean squared residual
of the measured data on the kinetic energy of the flow. For
low values(left end of Fig. 5) only little kinetic energy is

FIG. 1. Scheme(a) and photo-
graph(b) of the CIFT experiment.

FIG. 2. Propeller rotation rate and induced magnetic field mea-
sured at the Hall sensor emphasized in Fig. 1(a).
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allowed, leading to a velocity field that fits the measured
magnetic field data only poorly. For high values(right end of
Fig. 5) the data are fitted very well but with an unphysical
high kinetic energy. At the points of strongest bending(the
“knee”), the resulting velocities(Figs. 3 and 4) are physically
most reasonable[9].

IV. VALIDATION

In order to validate the CIFT method, we have performed
independent velocity measurements based on ultrasonic
Doppler velocimetry(UDV). For that purpose we have used
the DOP2000 ultrasonic velocimeter manufactured by
Signal-Processing SA(Lausanne, Switzerland), which had
already demonstrated its capabilities for velocity measure-
ments in liquid metals[10,11]. As ultrasonic transducers we
have used 2 MHz probes.

Because of its comparably large magnetic Reynolds num-
ber sRm<0.2d, the propeller-driven flow in the cylinder has
also a large hydrodynamic Reynolds numbersRe<23105d.
Necessarily, the flow is highly turbulent. Strong fluctuations
are observed both by the CIFT method as well as by UDV.

For a sensible comparison of both methods, some time
averaging is advised. In the following we will focus on two

UDV measurements that were both taken at a propeller rota-
tion rate of 1200 rpm, and which represent a time average
over half a minute.

The first measurement concerns the axial velocity along
the central vertical axis of the cylinder. This axial component
is easily measured by an ultrasonic transducer flash mounted
to the bottom of the cylinder. Figure 6 shows the results of
the UDV measurement(up to the propeller position), to-
gether with the results of the CIFT measurement. For both
upward and downward pumping we see a reasonable corre-
spondence of both measurements. Notably, CIFT exhibits the
different axial dependencies that are typical for upward and
downward pumping and which are confirmed by the UDV
data.

The second measurement, which concerns the azimuthal
velocity component, deserves some explanation. Figure 7
shows the UDV measurement set-up. The axial position is at
70 mm from the bottom. What is actually measured by UDV
is the projection of the velocity onto the ultrasound beam
along the chord. Therefore, the measured signal is in general
a mixture of the radial and azimuthal velocity components.
Only in the middle of the chord we get a signal that origi-
nates purely from the azimuthal velocity. In Figs. 7(a) and
7(b) we illustrate the measured data that are shown in Fig. 8.

FIG. 3. Measured induced magnetic field components for transverse(a) and axial(b) applied magnetic field, and reconstructed velocity
as seen from the side(c) and from below(d). The gray scale of the arrows indicates the distance from the eye. The propeller pumpsupward
at 1200 rpm.
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In the case of downward pumping the velocity is dominated
by the rotation whereas for upward pumping it is dominated
by the radial part. In the middle of the chord we infer a mean
azimuthal velocity of 0.58 m/s for downward pumping and
−0.05 m/s for upward pumping.

Do these UDV values agree with those obtained by CIFT?
In Fig. 9 we show the axial dependence of the azimuthal
velocity at a radial positionr =30 mm, as obtained by CIFT

during a measurement time of 6 s. We give here the indi-
vidual values at six different azimuthal positions(small
crosses and squares). Interestingly, though the system is in
general axisymmetric, nonaxisymmetric fluctuations are still
visible. The averages(large crosses and squares) over the six
azimuthal positions show, at an axial position ofz=70 mm, a
good agreement with the data from UDV measurement.

FIG. 4. The same as Fig. 3, but
for the propeller pumpingdown-
ward at 1200 rpm.

FIG. 5. Tikhonov’s L curve for the two different pumping direc-
tions. The arrows point at the bended knee where the curves have
the strongest curvature. At these points we get a reasonable com-
promise between data fitting and minimum kinetic energy of the
modeled velocity field. The rms of these velocities is approximately
0.41 m/s for the upward pumping and 0.73 m/s for the downward
pumping.

FIG. 6. Axial velocities along the central vertical axis of the
cylinder, determined by CIFT and by ultrasonic measurements. The
ultrasonic measurements are only shown up to the propeller posi-
tion, whereafter they become unreliable.
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V. CONCLUSIONS AND PROSPECTS

To summarize, we have put into practice a first version of
contactless inductive flow tomography, using two orthogonal
imposed magnetic fields. The comparison with UDV mea-
surements shows that the method provides robust results on
the main structure and the amplitude of the velocity field. A
particular power of CIFT consists in a transient resolution of
the full three-dimensional flow structure in steps of several
seconds. Hence, slowly changing flow fields in various pro-
cesses can be followed in time. Due to its weakness the
externally applied magnetic field does not influence the flow
to be measured. However, CIFT is also possible in cases
where stronger magnetic fields are already present for the
purpose of flow control, as, e.g., the electromagnetic brake in
steel casting or the dc field components in silicon crystal
growth. Obviously, the future of the method lies with apply-
ing ac fields with different frequencies in order to improve
the depth resolution of the velocity field. For problems with
higher Rm, including dynamos, the inverse problem becomes
nonlinear, and more sophisticated inversion methods must be
applied to infer the velocity structure from magnetic field
data. Although interesting results have been obtained by em-
ploying evolutionary strategies to inverse spectral dynamo
problems[12], and first tests of such inversion schemes for
the data from the Riga dynamo experiment have shown
promising results, the general inverse dynamo topic is ex-
tremely complicated and goes essentially beyond the scope
of the present paper.
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FIG. 7. Sketch of the ultrasonic measurement setup for the azi-
muthal velocity component. The obtained velocity along the chord
is a position dependent mixture of radial and azimuthal compo-
nents. In the middle of the chord, one gets the pure azimuthal com-
ponent.(a) Typical situation for downward pumping with dominant
azimuthal velocity(at the axial position 70 mm from the bottom).
The projection of the velocity onto the chord has a maximum in the
middle of the chord.(b) Typical situation for upward pumping with
dominant radial velocity. The projection of the velocity goes to zero
in the middle of the chord.

FIG. 8. Measured projection of the velocity onto the chord, for
downward and upward pumping. In the middle of the chord(at
85 mm distance from the wall) we get an azimuthal velocity of
+0.58 m/s for downward pumping and −0.05 m/s for upward
pumping(note the change of sign due to conventions in UDV mea-
surements). Compare also Fig. 7 for illustration.

FIG. 9. Azimuthal velocity atr =30 mm, as determined by CIFT
at different axial positions. The small symbols(crosses and squares)
represent individual measurements at six azimuthal positions. The
large crosses and squares represent the corresponding averages over
six azimuthal positions. The full symbols(circle and triangle) are
the UDV values as inferred from Fig. 8.
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