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Contactless inductive flow tomography
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The three-dimensional velocity field of a propeller-driven liquid metal flow is reconstructed by a contactless
inductive flow tomography. The underlying theory is presented within the framework of an integral equation
system that governs the magnetic field distribution in a moving electrically conducting fluid. For small mag-
netic Reynolds numbers this integral equation system can be cast into a linear inverse problem for the deter-
mination of the velocity field from externally measured magnetic fields. A robust reconstruction of the large
scale velocity field is already achieved by applying the external magnetic field alternately in two orthogonal
directions and measuring the corresponding sets of induced magnetic fields. Kelvin's theorem is exploited to
regularize the resulting velocity field by using the kinetic energy of the flow as a regularizing functional. The
results of this technique are shown to be in satisfactory agreement with ultrasonic measurements.
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I. INTRODUCTION unspecified for the moment. Then, according to Ohm'’s law

in moving conductors the current
Flow measurement in metallic and semiconducting melts

is a notorious problem in a number of technologies, reaching j=o(vXB-Vo) (1)

from iron casting to silicon crystal growth. Obviously, the .

usual optical methods of flow measurement are inappropriaté

for those opaque fluids. Ultrasonic techniques have prob-

lems, too, when applied to very hot or chemically aggressive HoO [v(r'y X B(r")] X (r=r")

melts. A completely contactless flow measurement technique b(r)=""— fff Ir—r'?

would be highly desirable, even if it were only to provide a

rough picture of the flow. o
Fortunately, metallic and semiconducting melts are char- _ K% o(s')n(s’) x %dg_ 2

acterized by a high electrical conductivity. Hence, when ex- A L r=¢|

posed to an external magnetic field, the flowing melt gives

rise to electrical currents that lead to a deformation of theEquation(2) follows from inserting Eq(1) into Biot-Savart’s

applied magnetic field. This field deformation is measurabldaw and transforming the volume integral oVek into a

outside the fluid volume, and it can be used to reconstruct theurface integral oveep.

velocity field, quite in parallel with the well-known magne-  The electric potentiap at the boundang, in turn, has to

toencephalography, where neuronal activity in the brain isatisfy the boundary integral equation

inferred from magnetic field measurement$. The goal of © ifff [V(r') X B(r)]-(s=r")

is induced, withe denoting the electric potential. This cur-
rent gives rise to the induced magnetic field

dv’

this paper is to report on the experimental demonstration of
such acontactless inductive flow tomography (CIET)

dav’

ls—r'[3

Il. THEORY - —ﬁg e(s')n(s’) - |3 ()

The ratio of the induced field to the applied field is deter-
mined by the so-called magnetic Reynolds number, defineEquation(3) follows from taking the divergence of Eql)
as Rm=uovl, with u denoting the magnetic permeability of and utilizingV-j=0. Then, Green’s theorem can be applied
the melt, o its electrical conductivityp a typical velocity, to the solution of the arising Poisson equatidgp=V -(v
andl a typical length scale of the flow. In industrial applica- X B), requiring that the current is purely tangential at the
tions, Rm is on the order of 0.01-1. Only for a few large boundary[3]. Note that Eq(3) is the basic formula for the
scale sodium flows, as they appear in fast breeder reactorgast area oklectric inductive flow measuremer#] which
but also in recent hydromagnetic dynamo experimg¢Bis is, however, not the subject of the present work.
does Rm reach values on the order of 10—{d@fOcourse, in In general, the magnetic fiell on the right hand sides of
some cosmic dynamos Rm can even be much lardetu-  Egs. (1)«(3) is the sum of an externally applied magnetic
ally, the present work was strongly motivated by the wish tofield B, and the induced magnetic fiehd Hence Eqgs(2) and
reconstruct the sodium flow in the Riga dynamo experiment3) represent an integral equation system which actually can
by an appropriate contactless method. be used to solve dynamo problems in arbitrary bounded do-
Suppose the fluid to flow with the stationary velocity — mains[5]. It is also suitable for a systematic investigation of
and to be exposed to a magnetic fi@d which we leave the nonlinear induction effects as they appear already in the
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subcritical regime of laboratory dynam§g. the spherical harmonics expansjdhat what can be derived

In the following, however, all considerations will be re- from the two magnetic field expansion coefficients are some
stricted to problems with small Rm for whidd can be re- radial moments of the expansion coefficients for the velocity
placed byB,. Then we get a linear relation between thefield. A further concretization of the radial dependence of the
desired velocity field and the induced magnetic field which isvelocity expansion coefficients can be achieved only by
supposed to be measured. But how to cope with the remaimegularization techniques. If we demand, in a slight overin-
ing Eqg. (3) for the electric potential? terpretation of Kelvin's theorem, the flow to possess minimal

The answer to this question can be adopted from magnekinetic energy, we obtain a unique solution for the radial
toencephalographjl]. Assume, for a giveB,, that all mea- dependence, too.
sured magnetic field data be collected into an Without any rigorous proof at hand, we assume that this
Ng-dimensional vector with entriet#Bo), and the desired ve- result can be generalized to aspherical geometry: the large
locity components at thi, discretization points by a vector main structure of the large scale flow is well inferrable, with
with the entriesv,. The solution of the boundary integral a depth ambiguity of the velocity that can be resolved only
equation may require a fine discretization of the boundarypy regularization techniques. Imposing two orthogonal mag-
with Np degrees of freedonp(kBO)_ Equationg2) and(3) can  hetic fields represents a certain minimum configuration for

then be written in the form such a flow tomography. For a single magnetic field of one
(Bo) — oB0) (B0 direc_tion there are, qf course, flow components which would
bi™" = Riy%vn+ Sk © (4) be hidden from outside. However, all those components are
detectable for an external magnetic field orthogonal to the
o8 = TE + U o5, (5)  previous one.

) ) For our experimental application we employ the so-called
where the matriceR® and T depend on the applied Tikhonov regularizatiori9], minimizing the total functional
field By, whereas the matricesandU depend only on geo-
metric factors. Fv]=Fg, [Vl +Fg [V]+Fq[V]+Fedvl  (7)

As is well known from magnetoencephalography, the in- * ‘
version of Eq«5) is a bit tricky due to the singularity of the jith
matrix (I —U). This singularity mirrors the fact that the elec-
tric potential is defined only up to an additive constant. We Ne 4
can remove this ambiguity by replacirig-U) by a gener- Fg, [V]=2 =5 (0500, bF[v])?, (8)
ally well conditioned matrix (I -U)%:= (I -U)-N"le€, i=1 i
wheree is a vector with allN entries equal to 1 anel is its

transpose. By applying this so-called deflation mettibp Ne 4
one ends up with Fg, [V]= > ;(bfi%)as— bBed[v])?, 9
- i=1 O]
b =R + S (1 - U)o, (6)

i.e., with a linear relation between the desired velocity field Ny

and the measured magnetic field. FaolVl= 52 (V- V)ZAV,, (10

Despite the far-reaching similarity, there is one essential Tdiv k=1
difference of our method compared to magnetoencephalog-
raphy. While in the latter one has to determine a single neu- 1 W
ronal current distribution, in our case we can produce quite FredV]= TE VEAVk. (11
different current distributionffom the same flow fielsimply Openk=1

by applying various external magnetic fields subsequently. i . i
For each applied magnetic field we can measure the corré'_:he first two functionals represent, for applied transverse

sponding induced fields, and utilize all of them to reconstrucfi€!d Box and axial fieldBy,, respectively, the mean squared
the flow. residual deviation of the measured induced magnetic fields

Concerning the uniqueness question for this sort of inverb 22, from the fieldsb®/[v] modeled according to EG6).
sion, here we give only a shortened answer, referring foFai,[V] enforces the velocity field to be solenoidal, and
more details to the previous papdi&8|. For spherical ge- FredV] is the regularization functional which tries to mini-
ometry, and the two applied magnetic fields pointing in or-mize the kinetic energy. The parametefsare the assumeal
thogonal directions, the problem can be solved with someoriori errors for the measurement of the induced fields. The
rigor. Suppose we have measured the two corresponding sgigarametewy;, is chosen very small as it is a measure for the
of induced magnetic fields on a sphere outside the fluid voldivergence the velocity solution is allowed to have. The pa-
ume, and have expanded them into spherical harmonics. Thrameter o, determines the trade-off between minimizing
desired(solenoidal velocity field can be represented by two the mean squared residual deviation of the observed fields
scalars for its poloidal and toroidal parts. These two scalarand minimizing the kinetic energy of the estimated velocity
can also be expanded into spherical harmonics, but with théeld. The normal equations, which follow from the minimi-
expansion coefficient still being functions of the radius. Inzation of the functiona(7), are solved by Cholesky decom-
Ref. [8] it had been showiiat least in some low degrees of position.
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M — Motor

P - Propeller

G — Guiding blades M
H — Helmbholtz coils

B — Hall sensors

FIG. 1. Schemé¢a) and photo-
graph(b) of the CIFT experiment.
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Ill. EXPERIMENT current in the Hall sensors to be constant. The temperature

In the experimen(Fig. 1) we use 4.4 | of the eutectic drift of the offset problem is circumvented by changing the
alloy Gasin,g Sy, s Which is liquid at room temperatures. sign of the applied magnetic field. Figure 2 shows that by
The flow is brodu'ced by a motor-driven propeller with g these means a stable measurement of the small induced field
diameter of 6 cm inside a cylindrical polypropylene vesselCan be realized, even over a period of one hour.
with 18.0 cm diameter. The height of the liquid metal is For upward and downward pumping, Figs. 3 and 4 show
17.2 cm, yielding an aspect ratio close to 1. the |.nduced magn.et|c.f|elds meagured at t_he 49 positions, and

The position of the propeller is approximately at one-thirgthe inferred velocity field at 52 dlscretlz_a'uon points. In Fig.
of the total height, measured from the top. Eight guiding(C) We see clearly the upward flow in the center of the
blades above the propeller are intended to remove the swiffeSSel and the downward flow at the rim, but nearly no ro-
of the flow for the case that the propeller pumps upward!@tion of the flow in Fig. 8d). In Fig. 4c) we can identify the
Contrary to that, the downward pumping produces, in addi_downwar_d flow in the center_and the upward flolw at the rim,
tion to the main poloidal motion, a considerable toroidal mo-21d in Fig. 4d) a clear rotation of the flow. Evidently, the
tion. The rotation rate of the propeller can reach up tomethod is able to |dent|fy the poloidal rolls and the absence
2000 rpm, which amounts to a mean velocity of approxi-O" Presence of the swirl. L
mately 1 m/s, corresponding to a magnetic Reynolds num- For both flow directions, Fig. 5 illustrates the application
ber of approximately 0.4. of Tikhonov's L curves[9]. This curve, which results from

Two pairs of Helmholtz coils are fed by currents of 22.5 Scaling the parameterye, in Eq. (11) from lower to higher
and 32.5 A, respectively, to produce alternately an axial anif@!ues, shows the dependence of the mean squared residual
a transversal field of 4 mT, which both are rather homoge®' the measured data on the kinetic energy of the flow. For
neous throughout the vessel. Either field is applied for a peloW values(left end of Fig. § only little kinetic energy is
riod of 3 s, during which a trapezoidal signal form is used.

The measurements are carried out for 0.5 s, 1 s after the 08 R
plateau value of the trapezoidal current has been reachec  0.06 | 1 2000
Hence, we get an online monitoring with a time resolution of 0.04 | {1 1500

6 s. {1 1000

The induced magnetic fields are measured by 49 Hall sen. 0.02 | 1 500

sors, eight of them grouped together on each of six circuitg 0 0 E
boards which are located at different heiglfg. 1). One & =
additional sensor is located in the center below the vessel -0.02 r 1 -500
The key problem of the method is the reliable determination ., | -1000

of comparably small induced magnetic fields on the back- ' -1500
ground of much higher imposed magnetic fields. An accurate  -0.06 | Induced magnetic field —— 1 -2000
control of the external magnetic field is essential to meet this o o Propeller rotation rate ——— 1 .2500
goal. In our configuration the current drift in the Helmholtz "7 0 500 1000 1500 2000 2500 3000 3500

coils can be controlled with an accuracy of better than 0.1%.
This is sufficient since the measured induced fields are ap-
proximately 1% of the applied field. The temperature drift of  FIG. 2. Propeller rotation rate and induced magnetic field mea-
the sensitivity can be overcome by enforcing the appliedsured at the Hall sensor emphasized in Fig).1

t[s]
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FIG. 3. Measured induced magnetic field components for transyarsed axial(b) applied magnetic field, and reconstructed velocity
as seen from the side) and from below(d). The gray scale of the arrows indicates the distance from the eye. The propeller ponvarsl
at 1200 rpm.

allowed, leading to a velocity field that fits the measuredUDV measurements that were both taken at a propeller rota-
magnetic field data only poorly. For high valugight end of  tion rate of 1200 rpm, and which represent a time average
Fig. 5 the data are fitted very well but with an unphysical over half a minute.

high kinetic energy. At the points of strongest benditite The first measurement concerns the z_ixiallvelocity along
“knee”), the resulting velocitiegFigs. 3 and #are physically ~ the central vertical axis of the cylinder. This axial component
most reasonablfg]. is easily measured by an ultrasonic transducer flash mounted
to the bottom of the cylinder. Figure 6 shows the results of
IV. VALIDATION the UDV measurementup to the propeller position to-

dgether with the results of the CIFT measurement. For both
Ilépward and downward pumping we see a reasonable corre-
spondence of both measurements. Notably, CIFT exhibits the
different axial dependencies that are typical for upward and
Ydownward pumping and which are confirmed by the UDV

In order to validate the CIFT method, we have performe
independent velocity measurements based on ultrason
Doppler velocimetryUDV). For that purpose we have used
the DOP2000 ultrasonic velocimeter manufactured b
Signal-Processing SAlLausanne, Switzerlandwhich had

already demonstrated its capabilities for velocity measure- The second measurement, which concerns the azimuthal
ments in liquid metal$10,11). As ultrasonic transducers We ye|ocity component, deserves some explanation. Figure 7
have used 2 MHz probes. shows the UDV measurement set-up. The axial position is at
Because of its comparably large magnetic Reynolds num7g mm from the bottom. What is actually measured by UDV
ber (Rm~=0.2), the propeller-driven flow in the cylinder has is the projection of the velocity onto the ultrasound beam
also a large hydrodynamic Reynolds numbRe~2x10°).  along the chord. Therefore, the measured signal is in general
Necessarily, the flow is highly turbulent. Strong fluctuationsa mixture of the radial and azimuthal velocity components.
are observed both by the CIFT method as well as by UDV.Only in the middle of the chord we get a signal that origi-
For a sensible comparison of both methods, some timeates purely from the azimuthal velocity. In Figgaj’and
averaging is advised. In the following we will focus on two 7(b) we illustrate the measured data that are shown in Fig. 8.
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FIG. 4. The same as Fig. 3, but
for the propeller pumpinglown-
ward at 1200 rpm.

(©) 1m/s (d)

In the case of downward pumping the velocity is dominatedduring a measurement time of 6 s. We give here the indi-
by the rotation whereas for upward pumping it is dominatedvidual values at six different azimuthal positioismall
by the radial part. In the middle of the chord we infer a meancrosses and squajednterestingly, though the system is in
azimuthal velocity of 0.58 m/s for downward pumping and general axisymmetric, nonaxisymmetric fluctuations are still
-0.05 m/s for upward pumping. visible. The average@arge crosses and squareser the six

Do these UDV values agree with those obtained by CIFTazimuthal positions show, at an axial positioreef70 mm, a
In Fig. 9 we show the axial dependence of the azimuthajood agreement with the data from UDV measurement.
velocity at a radial positiom=30 mm, as obtained by CIFT

1F CIF'T, Down —|— 0 g

o . CIFT,Up [
= | UDV, Down e o O
= 800 UDV, Up =
]

— 05 . 4
D e00 | @ -
%) IS =
@ =

S
e =
o 400 8 of + H
=] [+5]
o >
& 200 =
© Downward %

10% 10 10° 102 107" 10° 10" 107
Mean squared velocity Im?/s?] ] + +
FIG. 5. Tikhonov’s L curve for the two different pumping direc- 0 20 40 60 80 100 120 140 160
tions. The arrows point at the bended knee where the curves hav Distance from bottom [mm]

the strongest curvature. At these points we get a reasonable com-

promise between data fitting and minimum kinetic energy of the FIG. 6. Axial velocities along the central vertical axis of the
modeled velocity field. The rms of these velocities is approximatelycylinder, determined by CIFT and by ultrasonic measurements. The
0.41 m/s for the upward pumping and 0.73 m/s for the downwardultrasonic measurements are only shown up to the propeller posi-
pumping. tion, whereafter they become unreliable.
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CIFT, Down
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FIG. 9. Azimuthal velocity at =30 mm, as determined by CIFT
at different axial positions. The small symb@tsosses and squajes
1 represent individual measurements at six azimuthal positions. The
large crosses and squares represent the corresponding averages over
six azimuthal positions. The full symbo(gircle and trianglg are
the UDV values as inferred from Fig. 8.

Projections onto the chord

V. CONCLUSIONS AND PROSPECTS

To summarize, we have put into practice a first version of
contactless inductive flow tomography, using two orthogonal
FIG. 7. Sketch of the ultrasonic measurement setup for the azil_mposed magnetic fields. The comparl§on with UDV mea-

urements shows that the method provides robust results on

muthal velocity component. The obtained velocity along the chord®

is a position dependent mixture of radial and azimuthal compo-the main structure and the amplitude of the velocity field. A

nents. In the middle of the chord, one gets the pure azimuthal comP@rticular power of CIFT consists in a transient resolution of
ponent.(a) Typical situation for downward pumping with dominant the full three-dimensional flow structure in steps of several
azimuthal velocity(at the axial position 70 mm from the bottpm S€conds. Hence, slowly changing flow fields in various pro-
The projection of the velocity onto the chord has a maximum in thecésses can be followed in time. Due to its weakness the
middle of the chord(b) Typical situation for upward pumping with ~externally applied magnetic field does not influence the flow
dominant radial velocity. The projection of the velocity goes to zeroto be measured. However, CIFT is also possible in cases
in the middle of the chord. where stronger magnetic fields are already present for the
purpose of flow control, as, e.g., the electromagnetic brake in
steel casting or the dc field components in silicon crystal
growth. Obviously, the future of the method lies with apply-
ing ac fields with different frequencies in order to improve
the depth resolution of the velocity field. For problems with
higher Rm, including dynamos, the inverse problem becomes
nonlinear, and more sophisticated inversion methods must be
applied to infer the velocity structure from magnetic field
data. Although interesting results have been obtained by em-
ploying evolutionary strategies to inverse spectral dynamo
problems[12], and first tests of such inversion schemes for
0.5 the data from the Riga dynamo experiment have shown
-06 . promising results, the general inverse dynamo topic is ex-
07 s s s M s s s tremely complicated and goes essentially beyond the scope

20 40 60 80 100 120 140 160 of the present paper.
Distance from the wall [mm]

(b)

0.2 '
0.1
0
-0.1
-0.2
-0.3
-0.4

Measured velocity [m/s]

-0.58 m/s

-

FIG. 8. Measured projection of the velocity onto the chord, for
downward and upward pumping. In the middle of the ch¢at
85 mm distance from the wallwe get an azimuthal velocity of
+0.58 m/s for downward pumping and -0.05 m/s for upward Financial support from German “Deutsche Forschungsge-
pumping(note the change of sign due to conventions in UDV mea-meinschaft” under Grant No. GE 682/10-1,2 is gratefully
surements Compare also Fig. 7 for illustration. acknowledged.
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